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Research

Benzene is a ubiquitous environmental conta-
minant generated from petroleum products
and from combustion of organic matter,
including cigarette smoking. Air concentra-
tions of benzene are typically < 0.01 ppm in
ambient environments but can exceed
10 ppm in industrial settings where benzene-
containing products are used [International
Agency for Research on Cancer (IARC)
1989; Wallace 1996]. Workers exposed to
benzene have consistently experienced
increased risks of hematopoietic disorders and
leukemias (Hayes et al. 2000; Lan et al. 2004;
Savitz and Andrews 1997). These toxic effects
are thought to result from metabolism of
benzene to reactive products (Snyder 2002). 

As shown in Figure 1, benzene metabolites
include several reactive electrophiles, namely,
benzene oxide (BO), 1,2- and 1,4-benzo-
quinone (1,2-BQ and 1,4-BQ, respectively),

the muconaldehydes, and benzene diolepoxide
[reviewed by (Snyder 2000a, 2000b, 2002)].
Because these electrophilic species are short
lived in vivo, they have been investigated in ani-
mals and humans by measuring their adducts
with hemoglobin, serum albumin, and bone-
marrow proteins (Bechtold et al. 1992;
McDonald et al. 1993; Rappaport et al. 2002a;
Waidyanatha et al. 1998; Yeowell-O’Connell
et al. 1996, 2001). Albumin adducts of BO
(BO-Alb) and 1,4-BQ (1,4-BQ-Alb) accumu-
late over the course of 3–4 weeks in humans
(Rappaport et al. 2002a) and thereby serve as
intermediate-term biomarkers of exposure (Lin
et al. 2005). Although albumin adducts of
1,2-BQ (1,2-BQ-Alb) have been reported in
rats and mice to which benzene had been
administered (McDonald et al. 1994; Troester
et al. 2000; Waidyanatha et al. 1998), they
have not been reported heretofore in humans. 

In previous studies of benzene-exposed
workers in China, nonlinear (concave-down-
ward) exposure–adduct relationships were
reported for BO-Alb and 1,4-BQ-Alb, and
adduct levels were significantly affected by age
and cigarette smoking (Rappaport et al. 2002a,
2005). However, those investigations did not
explore exposure–adduct relationships among
persons exposed to benzene in environmental
air and cigarette smoke because of large back-
ground contributions of BO-Alb and 1,4-BQ-
Alb from dietary and endogenous sources (Lin
et al. 2006; McDonald et al. 2001). This raises
questions regarding the range of benzene expo-
sures over which BO-Alb and 1,4-BQ-Alb can
serve as useful biomarkers. 

In the present study, we report levels of
BO-Alb, 1,4-BQ-Alb, and 1,2-BQ-Alb in
250 benzene-exposed workers and 140 control
workers in Tianjin, China. Because individual
benzene exposures were obtained for both
exposed and control workers, we constructed
exposure–adduct relationships over about
5 orders of magnitude of air concentrations
and determined levels of exposure at which
benzene-derived adducts can be differentiated
from background adducts. We then identified
effects on adduct levels of the blood-collection
medium, age, body mass index (BMI), sex,
and cigarette smoking. Because two blood
samples were obtained from a subset of
exposed workers, we also estimated within-
person and between-person components of
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BACKGROUND: Metabolism of benzene produces reactive electrophiles, including benzene oxide
(BO), 1,4-benzoquinone (1,4-BQ), and 1,2-benzoquinone (1,2-BQ), that are capable of reacting
with blood proteins to produce adducts. 

OBJECTIVES: The main purpose of this study was to characterize relationships between levels of albu-
min adducts of these electrophiles in blood and the corresponding benzene exposures in benzene-
exposed and control workers, after adjusting for important covariates. Because second blood samples
were obtained from a subset of exposed workers, we also desired to estimate within-person and
between-person variance components for the three adducts. 

METHODS: We measured albumin adducts and benzene exposures in 250 benzene-exposed workers
(exposure range, 0.26–54.5 ppm) and 140 control workers (exposure range < 0.01–0.53 ppm) from
Tianjin, China. Separate multiple linear regression models were fitted to the logged adduct levels
for workers exposed to benzene < 1 ppm and ≥ 1 ppm. Mixed-effects models were used to estimate
within-person and between-person variance components of adduct levels.

RESULTS: We observed nonlinear (hockey-stick shaped) exposure–adduct relationships in log-scale,
with inflection points between about 0.5 and 5 ppm. These inflection points represent air concentra-
tions at which benzene contributed marginally to background adducts derived from smoking and
from dietary and endogenous sources. Adduct levels were significantly affected by the blood-collection
medium (serum or plasma containing either heparin or EDTA), smoking, age, and body mass index.
When model predictions of adduct levels were plotted versus benzene exposure ≥ 1 ppm, we
observed marked downward concavity, particularly for adducts of the benzoquinones. The between-
person variance component of adduct levels increased in the order 1,2-BQ < 1,4-BQ < BO, whereas
the within-person variance components of the three adducts followed the reverse order. 

CONCLUSIONS: Although albumin adducts of BO and the benzoquinones reflect exposures to ben-
zene ≥ 1 ppm, they would not be useful biomarkers of exposure at ambient levels of benzene, which
tend to be < 0.01 ppm, or in those working populations where exposures are consistently < 1 ppm.
The concavity of exposure–adduct relationships is consistent with saturable metabolism of benzene
at air concentrations > 1 ppm. The surprisingly large effect of the blood-collection medium on
adduct levels, particularly those of the benzoquinones, should be further investigated. 

KEY WORDS: albumin adduct, benzene oxide, benzoquinone, nonlinear, variation. Environ Health
Perspect 115:28–34 (2007). doi:10.1289/ehp.8948 available via http://dx.doi.org/ [Online
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variance for the three albumin adducts.
Finally, we considered the concavity of the
exposure–adduct relationships for workers
exposed to ≥ 1 ppm. 

Materials and Methods 

Recruitment of subjects. This study was
approved by the Institutional Review Boards
of the National Cancer Institute, the Chinese
Academy of Preventive Medicine, the
University of North Carolina at Chapel Hill,
and the University of California, Berkeley.
Exposed workers (n = 250) were recruited
from two shoe manufacturing factories in
Tianjin, China, and sex- and age-matched
control workers (n = 140) were recruited from
neighboring clothes manufacturing factories.
Written informed consent was obtained at the
time of enrollment, and a standardized ques-
tionnaire was administered to gather demo-
graphic and lifestyle information including
medical history, current smoking status, and
alcohol consumption (Lan et al. 2004). 

Exposure assessment. A detailed descrip-
tion of the exposure assessment was reported
previously (Kim et al. 2006; Vermeulen et al.
2004). Briefly, occupational exposure to ben-
zene, from the use of benzene-containing
glues, was measured during each of 16 months
over 2000–2001 with passive personal moni-
tors (Organic Vapor Monitors; 3M, St. Paul,
MN, USA) (Vermeulen et al. 2004). None of
the workers used respirators. Because all ben-
zene measurements among control workers
were below the limit of detection (nominally
0.2 ppm), air levels were predicted for these
subjects from postshift levels of urinary ben-
zene (one to four measurements per person)
(Kim et al. 2006). Air concentrations of ben-
zene among exposed workers were estimated
as geometric mean (GM) levels for all statisti-
cal analyses, using individual air measurements
obtained within about 3 months of each blood
sample (median: four measurements per
person). The median interval between the first
air measurement and blood collection was
90 days, and 90% of the intervals ranged
between 54 and 103 days. For subjects with
two blood specimens (n = 28), we used only
data from the first sample for cross-sectional
analyses. 

Measurement of albumin adducts. All sub-
jects provided a single venous blood sample
during either 2000 or 2001, and 28 exposed
subjects provided blood specimens in both
years. Eighty percent of the assays were con-
ducted with serum, 12% with plasma contain-
ing heparin, and 8% with plasma containing
EDTA. (Adducts were measured in plasma
samples only in cases where serum was unavail-
able because of amounts of serum required for
other assays.) Serum (or plasma) was separated
from red cells immediately after phlebotomy
and stored at –80°C until analysis. Samples

were identified by randomly assigned numbers.
Information about exposure levels and demo-
graphic factors were released after all assays had
been completed and results had been shared
with collaborators. 

Albumin was isolated from serum or
plasma, dried to constant weight, and analyzed
by derivatization and gas chromatography-
mass spectrometry, as described previously
(Waidyanatha et al. 1998) with minor modifi-
cations. Briefly, to 5 mg albumin we added
5 μg [2H4]1,4-BQ-Alb, 10 μg [2H4]1,2-
BQ-Alb, and 0.005 pmol [2H5]S-phenyl cys-
teine (internal standards). Samples were
thoroughly dried and then reacted with tri-
fluoroacetic anhydride and methanesulfonic
acid to produce volatile fluorinated derivatives
of the sulfur-bound adducts. Although the
benzoquinones are capable of forming multi-
S-substituted adducts and crosslinks, our assay
only detected mono-S-substituted adducts.
After concentrating the products under nitro-
gen, the residue was dissolved in hexane and
then washed once with 0.1 M Tris buffer
(pH 7.5) and twice with deionized water. The
solution was concentrated under nitrogen to
200 μL and 1- or 2-μL aliquots were analyzed
by gas chromatography-negative ion chemical
ionization mass spectrometry in selected ion
monitoring mode using an HP 5980 Series II-
plus gas chromatograph, containing a DB-5
fused silica column (60 m, 0.25-mm i.d., 0.25-
μM film thickness), and coupled to an HP
5989B MS engine (HP-Agilent, Santa Clara,

CA, USA). We monitored the following ions:
m/z 333 for 1,2-BQ-Alb and 1,4-BQ-Alb, m/z
336 for [2H4]1,2-BQ-Alb and [2H4]-1,4-BQ-
Alb, m/z 206 for BO-Alb, and m/z 211 for
[2H5]BO-Alb. Quantification was based on
peak areas relative to the corresponding iso-
topically labeled internal standards.

Statistical analyses. Summary statistics
and assay precision. The precision of the
adduct assays [expressed as a coefficient of vari-
ation (CV)] was determined from duplicate
assays of 38 randomly selected albumin speci-
mens that had been analyzed blind from the
study population. The CV was estimated as 

where s 2
ε is the estimated error variance

obtained from a one-way analysis of variance
(ANOVA) of the log-transformed levels of
each analyte. Chi-square statistics and
ANOVA, or nonparametric Wilcoxon rank-
sum tests (if the distributions were skewed),
were used to examine the distributions of
albumin adducts and demographic factors,
stratified by exposure status. 

Exposure–adduct relationships. Before
building final regression models, non-
parametric generalized additive models with
loess smoothers (Hastie and Tibshirani 1999)
were applied to explore nonlinear relationships
between levels of albumin adducts and benzene
exposures, after adjusting for covariates with
the convergence criteria recommended by

exp( ) – ,sε
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Figure 1. Pathways of benzene metabolism leading to reactive electrophilic species. CYP, cytochrome P450.
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Dominici et al. (2002). Partial residual plots
were also used to assess nonlinearity and to
determine whether transformations of contin-
uous covariates were needed. Because the dis-
tributions of adduct levels and benzene
exposures were right-skewed and displayed
nonuniform variances, we used natural loga-
rithms of the observations for multiple linear
regression models. 

Segmented linear regression models were
developed to investigate exposure–adduct
relationships and covariate effects above and
at or below a common exposure concentra-
tion for the three adducts. After considering
various benzene concentrations between 0.1
and 3 ppm, we chose a value of 1 ppm
because it maximized overall values of R2 and
minimized overall values of the Akaike infor-
mation criterion (AIC) for models of the
three adducts. We used residual plots to assess
the fits of final models. Candidate covariates
were selected based upon preliminary uni-
variate analyses and findings from previous
studies. The generalized extreme-Studentized-
deviation-many-outlier method (Rosner
1983) identified six outliers of 1,2-BQ-Alb
among subjects exposed to < 1 ppm of

benzene; these outliers were excluded from
multiple regression models to ensure the
accuracy and reliability of analyses.

Estimation of between-person and
within-person variance components for levels
of albumin adducts. Mixed-effects models,
which account for the correlation between ser-
ial measurements on the same subjects, were
used to estimate the between-person and
within-person variance components for logged
levels of BO-Alb, 1,2-BQ-Alb, or 1,4-BQ-Alb.
Considering the blood-collection medium as a
fixed effect, this model has the form 

Yhij = ln(Xhij) = γh + βhi + εhij, [1]

where Xhij is the level of a specific albumin
adduct for the jth observation (j = 1, 2) from
the ith person (i = 1, …, 28) with the hth
blood-collection medium (h = 1, 2, 3), Yhij is
the natural logarithm of Xhij, γh is the fixed
effect of the hth blood-collection medium,
βhi is the random effect of the ith person with
the hth blood-collection medium, and εhij is
the random-error effect of the jth observation
from the ith person with the hth blood-
collection medium. The random effects βhi

and εhij are assumed to be common to all
blood-collection media, mutually indepen-
dent, and normally distributed, with means of
zero and variances of σ2

B and, σ2
W represent-

ing the between- and within-person variance
components, respectively. We assumed a
compound symmetric variance–covariance
structure and used restricted maximum likeli-
hood estimation. The estimates of σ2

B and σ2
W

are designated as σ̂2
B and, σ̂ 2

W, respectively.
We used σ̂2

B and σ̂2
W to estimate the intraclass

correlation coefficient 

and the variance ratio λ̂ = σ̂ 2
W/σ̂2

B . The intra-
class correlation coefficient (ICC) represents
the estimated correlation between the jth and
j´th observations on the ith subject and is
often used as an index of reliability of a set of
measurements (larger is better). The estimated
variance ratio λ̂ is a measure of the attenuation
bias (smaller is better) when using a surrogate
for true exposure (albumin adduct levels in
this context) to predict an exposure–disease
relationship (Lin et al. 2005). The SAS stan-
dard package for Windows version 8.2 (SAS
Institute Inc., Cary, NC, USA) and S-PLUS
6.2 (Insightful Corp., Seattle, WA, USA) were
used for statistical analyses, and the level of
significance of all tests was 0.05. 

Results

Assay precision and summary statistics. The
CVs of the assays of the three albumin adducts
were 0.358, 0.129, and 0.061 for BO-Alb,
1,2-BQ-Alb, and 1,4-BQ-Alb, respectively. 

The distributions of population charac-
teristics and exposure categories are summa-
rized in Table 1. The following median values
of individual GM air concentrations of
benzene were estimated within 3 months of
phlebotomy: 0.004 ppm for control workers
(predicted from levels of urinary benzene,
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Table 1. Summary statistics of population demographic characteristics [median (range) or n (%)].

Controls < 1 ppm 1 to < 10 ppm ≥ 10 ppm
(n = 140)a (n = 70) (n = 149) (n = 31) p-Valueb

Age (years) 28 (18–51) 28 (19–46) 27 (18–49) 36 (21–52) 0.02
BMI (kg/m2) 21.6 (16.0–38.5) 22.3 (15.4–30.1) 22.0 (15.4–32.3) 21.3 (17.7–28.3) 0.89
Sex [n (%)] 0.30

Male 52 (37) 30 (43) 45 (30) 11 (35)
Female 88 (63) 40 (57) 104 (70) 20 (65)

Current alcohol use [n (%)] 0.41
Yes 43 (31) 20 (29) 35 (23) 11 (35)
No 97 (69) 50 (71) 114 (77) 20 (65)

Current smoker [n (%)] 0.19
Yes 39 (28) 17 (24) 26 (17) 8 (26)
No 101 (72) 53 (76) 123 (83) 23 (74)

Urinary benzene (µg/L) 0.120 (0.007–10.1) 7.89 (0.667–72.5) 23.8 (0.50–1,400) 359 (5.20–4,210) < 0.001
Airborne benzene (ppm) 0.004 (< 0.01–0.53)c 0.46 (0.26–1.00) 2.07 (1.02–9.87) 19.1 (10.0–54.5) < 0.001
aOne missing datum for urinary (airborne) benzene (n = 139), and two missing data for BMI (n = 138). bWilcoxon rank-sum
test or chi-square test between smokers and nonsmokers. cEstimated from urinary benzene concentrations.

Table 2. Albumin adducts of benzene stratified by exposure category and blood-collection medium [median (range; n)].

Controlsa < 1 ppm 1 to < 10 ppmb ≥ 10 ppm 

BO-Alb (pmol/g)
Plasma EDTA 100 (70.9–155; n = 11) 172 (109–208; n = 10) 188 (134–261; n = 9) —c

Plasma heparin 99.4 (57.4–241; n = 19) 208 (208–208; n = 1)b 350 (106–698; n = 10) 528 (121–3,060; n = 19)
Serum 152 (66.3–486; n = 109) 163 (54.4–573; n = 59) 165 (68.8–917; n = 129) 838 (307–3,920; n = 12)
p-Value < 0.001 0.61 0.04 0.24

1,2-BQ-Alb (pmol/g)
Plasma EDTA 1,240 (859–1,810; n = 11) 1,670 (1,230–2,360; n = 10) 1,030 (530–1,460; n = 9) —c

Plasma heparin 204 (72.2–737; n = 19) 169 (169–169; n = 1)d 206 (100–394; n = 10) 222 (147–539; n = 19)
Serum 125 (71.3–2,480; n = 109) 106 (69.4–397; n = 59) 110 (66.4–1,280; n = 129) 204 (98.9–1,420; n = 12)
p-Value < 0.001 < 0.001 < 0.001 0.94

1,4-BQ-Alb (pmol/g)
Plasma EDTA 7,080 (5,450–18,600; n = 10) 6,990 (5,520–9,640; n = 10) 7,030 (4,530–30,100; n = 9) —c

Plasma heparin 1,520 (466–3,210; n = 19) 5,590 (5,590–5,590; n = 1)d 3,990 (1,870–6,520; n = 10) 6,020 (2,310–13,300; n = 19)
Serum 1,340 (420–12,600; n = 109) 1,710 (905–5,270; n = 59) 2,100 (953–6,100; n = 129) 5,900 (1,020–11,300; n = 12)
p-Value < 0.001 < 0.001 < 0.001 0.63

Nonparametric Kruskal-Wallis tests were used to compare adduct levels among three blood-collection media within each exposure category. 
aOne missing datum for BO-Alb and 1,2-BQ-Alb (n = 139), and two missing data for 1,4-BQ-Alb (n = 138). bOne missing datum for all albumin adducts (n = 148). cNo data available.
dExcluded from the analysis because there was only one observation.



n = 140), 0.460 ppm for workers exposed to
< 1 ppm benzene (n = 70), 2.07 ppm for
workers exposed to 1 to < 10 ppm benzene
(n = 149), and 19.1 ppm for workers exposed
to ≥ 10 ppm benzene (n = 31). Differences
were generally small in the distributions of
BMI, sex, and alcohol use across exposure
categories. 

Table 2 shows the distributions of albu-
min adducts stratified by blood-collection
medium and exposure category. The effect of
the blood-collection medium was striking,
particularly for 1,2-BQ-Alb and 1,4-BQ-Alb,
with adduct levels decreasing in the order
plasma EDTA >> plasma heparin > serum.
Although the effect of the blood-collection

medium was smaller for BO-Alb, significant
differences in BO-Alb levels were nonetheless
observed between collection media in two of
the four exposure categories. 

Exposure–adduct relationships. Figure 2
shows log-scale scatter plots with loess trends
for albumin adducts in relation to benzene
exposure, after adjustment for blood-collec-
tion medium, age, BMI, and smoking status.
Interestingly, all three adducts displayed non-
linear (hockey-stick–shaped) exposure–adduct
relationships with inflection points in those
exposed to benzene at approximately 0.5–5
ppm. The curves shown at benzene concen-
trations < 1 ppm represent the rather small
contributions of benzene-derived adducts to

adducts arising from unknown dietary and
endogenous sources. Above 1 ppm, the con-
tributions of benzene exposure to albumin
adducts become apparent. 

Given the nonlinear relationships between
adduct levels and benzene exposure shown in
Figure 2, we fit separate linear models of
adducts levels for subjects exposed to < 1 ppm
and ≥ 1 ppm. These models are summarized in
Tables 3–5 for BO-Alb, 1,2-BQ-Alb, and
1,4-BQ-Alb, respectively. To compare among
adducts, we retained smoking status, age, and
BMI in final models even if they were not sta-
tistically significant. Six outliers of 1,2-BQ-Alb
among individuals exposed to < 1 ppm (shown
in Figure 2B), were excluded from multivariate
regression analyses based on the generalized
extreme-Studentized-deviation-many-outlier
method (Rosner 1983).

Results of multivariate models showed that
benzene exposure was a much stronger predic-
tor of adduct levels among workers exposed to
≥ 1 ppm; indeed, only 1,4-BQ-Alb was signifi-
cantly associated with benzene exposure
< 1 ppm (regression coefficient β = 0.030,
p = 0.010; Table 5). Among workers exposed
to ≥ 1 ppm benzene, the regression coefficient
of (logged) benzene exposure was much greater
for BO-Alb (β = 0.668) than for 1,2-BQ-Alb
(β = 0.393) or 1,4-BQ-Alb (β = 0.391). 

As expected from summary analyses shown
in Table 2, the blood-collection medium was
an important predictor of levels of albumin
adducts, particularly for 1,2-BQ-Alb and
1,4-BQ-Alb, where plasma collected in
EDTA showed much higher adduct levels
than serum (p < 0.001). In contrast, the effect
of the blood-collection medium was small for
BO-Alb, where it was significant only among
workers exposed to < 1 ppm benzene. Due to
the large effects of the blood-collection
medium, parallel multiple regression models
were performed with albumin adducts deter-
mined in serum only (n = 300). These analy-
ses produced final models that were essentially
the same as those shown in Tables 3–5 (data
not shown).

Effects of other covariates differed among
the albumin adducts and between exposure
categories. For BO-Alb (Table 4), smokers
exposed to ≥ 1 ppm benzene had marginally
higher adduct levels than nonsmokers
(p = 0.048), after adjustment for other covari-
ates. The effects of cigarette smoking were
much more pronounced for adducts of the
benzoquinones in both low (< 1 ppm:
p = 0.024 for 1,2-BQ-Alb and p < 0.001 for
1,4-BQ-Alb) and high (≥ 1 ppm: p = 0.007 for
1,2-BQ-Alb and p = 0.003 for 1,4-BQ-Alb)
exposure categories (Tables 4, 5). Age and
BMI tended to be negatively associated with
the levels of all three albumin adducts
(Table 3–5). However, the effect of age
was significant only for 1,2-BQ-Alb among
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Figure 2. Levels of BO-Alb (A), 1,2-BQ-Alb (B), and 1,4-BQ-Alb (C) at increasing air concentrations of ben-
zene, after adjusting for blood-collection medium, age, BMI, and cigarette smoking. Dashed lines indicate a
loess smooth function of benzene exposure derived from a generalized additive model, with adjustment for
blood-collection medium, age, BMI, and cigarette smoking. In (B), note the six outliers, which were
excluded from multiple regression analyses.
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low-exposed subjects (p = 0.018) and was mar-
ginally significant for 1,4-BQ-Alb among high-
exposed subjects (p = 0.078); the effect of BMI
was significant only for 1,4-BQ-Alb for sub-
jects exposed to ≥ 1 ppm benzene (p = 0.014). 

Estimated between-person and within-
person variance components, ICCs, and vari-
ance ratios are shown in Table 6, based on
application of Equation 1 to adduct levels
from 28 exposed workers with two blood

specimens (median benzene concentra-
tion = 1.47 ppm; range: 0.353–42.9 ppm).
The estimated between-person variance com-
ponent (σ̂2

B) increased in the following order:
1,2-BQ-Alb (0.044) < 1,4-BQ-Alb (0.521)
< BO-Alb (1.59), whereas the estimated
within-person variance component σ̂ 2

W
increased in the opposite order: BO-Alb
(0.175) < 1,4-BQ-Alb (0.319) < 1,2-BQ-Alb
(0.503). The values of the ICCs were 0.901,
0.080, and 0.620 for BO-Alb, 1,2-BQ-Alb,
and 1,4-BQ-Alb, respectively, and the esti-
mated variance ratios (λ̂) were 0.110, 11.4,
and 0.612, respectively (Table 6). 

Discussion

In this study of 390 Chinese workers, we
observed that benzene exposures were associ-
ated with increased production of albumin
adducts of BO, 1,4-BQ and 1,2-BQ. These
findings confirm earlier associations between
levels of BO-Alb and 1,4-BQ-Alb and benzene
exposures in two other populations of Chinese
workers (Rappaport et al. 2002a; Yeowell-
O’Connell et al. 2001) and show that levels of
1,2-BQ-Alb, which had not been reported
heretofore in humans, were also associated
with benzene exposure at ≥ 1 ppm.

The shapes of exposure–adduct relation-
ships in persons exposed to low levels of ben-
zene from environmental air have not been
reported previously. In the present study, we
modeled adduct concentrations over about
5 orders of magnitude of benzene exposures
(range, < 0.01–54.5 ppm), using benzene con-
centrations that had been predicted for control
subjects from measurements of urinary ben-
zene (Kim et al. 2006). The results, shown in
Figure 2, point to hockey-stick-shaped rela-
tionships in log-scale between each of the
three adducts and benzene exposure. The
inflection points, which ranged from 0.5 to
5 ppm, represent air concentrations at which
benzene contributed marginally to the pools of
background adducts. Based on the curves in
Figure 2, it appears that 1,4-BQ-Alb was the
most responsive to benzene exposure, with an
inflection point of about 0.5 ppm, followed by
BO-Alb (~ 1–3 ppm) and 1,2-BQ-Alb
(~ 5 ppm). Interestingly, the inflection points
for 1,4-BQ-Alb and 1,2-BQ-Alb are compara-
ble to those observed for urinary levels of
hydroquinone and catechol (their respective
precursors) in this same population of workers
(Kim et al. 2006). 

Our results also indicate that none of the
three albumin adducts would be useful bio-
markers of benzene exposure in ambient
populations, where air concentrations rarely
exceed 0.1 ppm, or in working populations
where exposures are consistently maintained at
< 1 ppm. Indeed, among workers exposed to
air concentrations < 1 ppm, only 1,4-BQ-Alb
showed a significant effect of benzene exposure
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Table 6. Estimated variance components of (log-transformed) levels of albumin adducts.a

BO-Alb 1,2-BQ-Alb 1,4-BQ-Alb

Between-person variance (σ̂ 2
B ) 1.59 0.044 0.521

Within-person variance (σ̂ 2
W) 0.175 0.503 0.319

0.901 0.080 0.620

0.110 11.4 0.612

aBased on a subgroup of 28 benzene-exposed workers; adjusted for blood-collection medium.
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Table 3. Multivariate linear regression models for BO-Alb.a,b  

< 1 ppm (n = 206)c ≥ 1 ppm (n = 179)c 

β (SE) p-Value β (SE) p-Value

Intercept 5.18 (0.220) < 0.001 5.21 (0.316) < 0.001
Benzene (ppm)a 0.002 (0.013) 0.884 0.668 (0.052) < 0.001
Blood-collection medium < 0.001 0.149

Plasma EDTA –0.246 (0.110) 0.027 0.133 (0.187) 0.478
Plasma heparin –0.407 (0.114) < 0.001 –0.250 (0.138) 0.071
Serum Reference Reference

Age (years) 0.002 (0.004) 0.611 –0.003 (0.005) 0.538
BMI (kg/m2) –0.007 (0.010) 0.470 –0.020 (0.013) 0.128
Smoke cigarettes 0.016 (0.076) 0.834 0.209 (0.105) 0.048
R 2 (adjusted R 2) 0.08 (0.05) 0.57 (0.56)
aLog-transformed. bFor the sake of comparison, nonsignificant covariates were also retained in the model. cBecause of
missing adduct determinations, four observations were excluded from the group exposed to < 1 ppm benzene and one
observation was excluded from the group exposed to ≥ 1ppm.

Table 4. Multivariate linear regression models for 1,2-BQ-Alb.a,b

< 1 ppm (n = 200)c ≥ 1 ppm (n = 179)c 

β (SE) p-Value β (SE) p-Value

Intercept 5.18 (0.181) < 0.001 4.31 (0.318) < 0.001
Benzene (ppm)a –0.001 (0.010) 0.889 0.393 (0.052) < 0.001
Blood-collection media < 0.001 < 0.001
Plasma EDTA 2.41 (0.088) < 0.001 2.14 (0.188) < 0.001
Plasma heparin 0.405 (0.091) < 0.001 –0.162 (0.139) 0.244
Serum Reference Reference
Age (years) –0.008 (0.003) 0.018 0.000 (0.005) 0.999
BMI (kg/m2) –0.007 (0.008) 0.368 0.007 (0.013) 0.607
Smoke cigarettes 0.139 (0.061) 0.024 0.286 (0.105) 0.007
R 2 (adjusted R 2) 0.81 (0.80) 0.52 (0.50)
aLog-transformed. bFor the sake of comparison, nonsignificant covariates were also retained in the model. cBecause of
missing adduct determinations, four observations were excluded from the group exposed to < 1 ppm benzene and one
observation was excluded from the group exposed to ≥ 1ppm. Six outliers were excluded from the group exposed to < 1 ppm.

Table 5. Multivariate linear regression models for 1,4-BQ-Alb.a,b

< 1 ppm (n = 205)c ≥ 1 ppm (n = 179)c 

β (SE) p-Value β (SE) p-Value

Intercept 7.78 (0.196) < 0.001 8.07 (0.245) < 0.001
Benzene (ppm)a 0.030 (0.011) 0.010 0.391 (0.040) < 0.001
Blood-collection media < 0.001 < 0.001
Plasma EDTA 1.55 (0.100) < 0.001 1.32 (0.145) < 0.001
Plasma heparin –0.052 (0.101) 0.608 0.230 (0.107) 0.033
Serum Reference Reference
Age (years) –0.005 (0.004) 0.144 –0.008 (0.004) 0.078
BMI (kg/m2) –0.013 (0.008) 0.134 –0.025 (0.010) 0.014
Smoke cigarettes 0.456 (0.068) < 0.001 0.242 (0.081) 0.003
R 2 (adjusted R 2) 0.62 (0.61) 0.60 (0.59)
aLog-transformed. bFor the sake of comparison, nonsignificant covariates were also retained in the model. cBecause of
missing adduct determinations, five observations were excluded from the group exposed to < 1 ppm benzene and one
observation was excluded from the group exposed to ≥ 1 ppm.



(Figure 2, Table 5), and this reflects exposures
between 0.1 and 1 ppm. When we fit the same
regression model to levels of 1,4-BQ-Alb for
workers exposed to ≤ 0.1 ppm benzene, the
coefficient (± SE) for benzene exposure
decreased from 0.030 (± 0.011) to 0.002
(± 0.032), with no hint of statistical signifi-
cance (p = 0.940).

Because all exposure–adduct relationships
were reasonably modeled by simple linear
models (in log-scale) > 1 ppm (Figure 2), we
fit separate multiple regression models to
workers exposed to benzene either < 1 ppm or
≥ 1 ppm. This allowed us to compare effects
of benzene exposure on adduct production
after adjusting for the blood-collection
medium, age, BMI, and smoking (Tables 3–5).
For workers exposed to benzene ≥ 1 ppm, the
log-scale regression coefficients for benzene
exposure and their upper 95% confidence
limits (UCL) were all < 1 [i.e., BO-Alb:
β = 0.668 (UCL = 0.770); 1,2-BQ-Alb:
β = 0.393 (UCL = 0.495); and 1,4-BQ-Alb:
β = 0.391 (UCL = 0.469)]. This indicates
that the natural-scale relationships between
adduct levels and benzene exposures were
concave downward in all cases, as observed
previously for BO-Alb and 1,4-BQ-Alb
(Rappaport et al. 2002a, 2002b). Furthermore,
the magnitude of each adjusted coefficient for
benzene exposure in Tables 3–5 indicates the
degree of concavity of the respective exposure–
adduct relationship in natural scale; that is, the
smaller the log-scale coefficient, the greater the
concavity in natural scale. This is illustrated in
Figure 3, which shows predicted natural-scale
relationships corresponding to the coefficients
estimated from the multiple linear regression
models. These curves represent adduct levels
in serum of nonsmoking workers of average
age and average BMI with GM benzene expo-
sures of ≥ 1 ppm. The relationships for the
two benzoquinone adducts show greater con-
cavity than that of BO-Alb. If these concave-
downward relationships are the result of
saturable metabolism of benzene, as suggested
previously in studies of animals (Medinsky
et al. 1989; Sabourin et al. 1988) and of
humans (Rappaport et al. 2002a, 2002b), then
our results indicate that the saturable effects are
greater for metabolism to the benzoquinones
than for metabolism to BO (Figure 1).

We found that levels of 1,2-BQ-Alb and
1,4-BQ-Alb were much higher in plasma con-
taining EDTA than in either serum or plasma
containing heparin (Table 2). While we do
not know the underlying reason for this
result, it probably explains the large difference
in 1,4-BQ-Alb levels, which had been
observed previously in two studies of benzene-
exposed workers (Rappaport et al. 2005). In
those studies, plasma containing EDTA con-
tained much higher levels of 1,4-BQ-Alb than
plasma containing citrate, and the difference

disappeared when adduct levels were adjusted
for concurrent controls. Because EDTA is a
well-known chelating agent, it is worth specu-
lating that chelation of iron would stabilize
benzoquinone adducts, possibly by inhibiting
Fenton chemistry. Additional work should
be conducted to determine why the blood-
collection medium would have such a large
effect upon levels of albumin adducts of the
benzoquinones. 

Regarding effects of smoking, age, and
BMI, results of multiple regression models var-
ied among the three types of adducts and
between exposure categories (Tables 3–5).
Among subjects exposed to benzene ≥ 1 ppm,
smoking was positively associated with levels of
BO-Alb (β = 0.209), 1,2-BQ-Alb (β = 0.286),

and 1,4-BQ-Alb (β = 0.242), indicating that
GM adduct levels were between 23% (i.e.,
e0.209) and 33% (i.e., e0.286) higher in smokers
than in nonsmokers. For subjects exposed to
< 1 ppm of benzene, smokers had 15% more
1,2-BQ-Alb (β = 0.139) and 58% more
1,4-BQ-Alb (β = 0.456) than nonsmokers,
whereas levels of BO-Alb were virtually unaf-
fected by smoking (β = 0.016). These results
point to the likely contributions of hydro-
quinone and catechol (precursors of 1,4-BQ
and 1,2-BQ, respectively) in cigarette smoke
(Kim et al. 2006). 

Adducts of the benzoquinones decreased
with age at about 0.8%/year of life for 1,2-BQ-
Alb in low-exposed workers (β = –0.008) and
1,4-BQ-Alb in high-exposed workers (β =

Albumin adducts of benzene metabolites
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Figure 3. Predicted natural-scale relationships between levels of BO-Alb (A), 1,2-BQ-Alb (B), and 1,4-BQ-Alb
(C). Data points represent adduct levels derived from serum from nonsmoking subjects of average weight
and BMI, with benzene exposure of ≥ 1 ppm; curves show adduct levels predicted from multivariate linear
models shown in Tables 3–5.
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–0.008). In a previous study of Chinese work-
ers exposed over a similar range of air concen-
trations, 1,4-BQ-Alb levels decreased by
1.9%/year of life among both exposed and
control workers (Rappaport et al. 2002a). 

Workers were also exposed to toluene at a
median concentration of 3.36 ppm (range,
< 0.3–80.9 ppm) (data not shown). Because
toluene competes with benzene for cyto-
chrome P450 2E1 metabolism, we anticipated
that levels of albumin adducts would decrease
with toluene exposure among workers exposed
to benzene at ≥ 1 ppm. However, when
toluene exposure was added to models of the
three albumin adducts, the effects were not
significant and regression coefficients for
benzene exposure were only marginally
reduced (3–4%). 

Because 28 exposed subjects had two blood
specimens (collected about 16 months apart),
it was possible to estimate within-person and
between-person variance components for the
(logged) levels of albumin adducts, after adjust-
ment for blood-collection media. The esti-
mated within-person variance component
(σ̂2

W) increased in the order BO-Alb < 1,4-BQ-
Alb < 1,2-BQ-Alb, whereas the estimated
between-person variance component (σ̂ 2

B )
showed the opposite behavior. Because σ̂ 2

W
tends to decrease with increasing residence
time of a biomarker (Lin et al. 2005), this find-
ing is consistent with a previous report that
BO-Alb was chemically stable in humans,
turning over with albumin (half life = 21 days),
whereas 1,4-BQ-Alb was marginally unstable
(half life = 13.5 days) (Rappaport et al. 2002a);
the finding also suggests that 1,2-BQ-Alb is
very unstable in humans.

This disparity in values of σ̂ 2
W and σ̂ 2

B
for the three albumin adducts influenced the
corresponding values of the 

ICC = , 

a measure of reliability (larger is better), and
of the variance ratio 

, 

a measure of the biasing potential of the bio-
marker as a surrogate for exposure (smaller is
better) (Lin et al. 2005). Because BO-Alb had
the largest ICC (0.901) and the smallest λ̂
(0.110), followed by 1,4-BQ-Alb (ICC =
0.620, λ̂ = 0.612) and 1,2-BQ-Alb (ICC =
0.080, λ̂ = 11.4), BO-Alb should be the most
reliable and least biasing biomarker of occupa-
tional exposure to benzene of the three adducts
measured in our study. 

The estimated within-person variance
components for BO-Alb (σ̂ 2

W = 0.175) and
1,4-BQ-Alb (σ̂2

W = 0.319) in the present study
were larger than those estimated previously
(σ̂ 2

W = 0.079 and 0.044, respectively) from
11 benzene exposed workers in China who
provided blood samples on three consecutive
Mondays (Rappaport et al. 2002a). The larger
estimates of σ̂ 2

W in the present study were
probably influenced by the much larger inter-
val between blood samples (about 16 months)
(Lin et al. 2005).

In conclusion, the present study confirms
and extends previous observations of concave
downward relationships between albumin
adducts of biologically reactive benzene
metabolites and benzene exposure (Figure 3)
(Rappaport et al. 2005). We attribute this
nonlinear behavior to saturable metabolic
processes involving the production of BO,
1,2-BQ, and 1,4-BQ in humans (Figure 1).
Because levels of these reactive and hemato-
toxic (at least in the case of 1,4-BQ) benzene
metabolites were less than proportional to
benzene exposure at air concentrations in the
range of 1–10 ppm (Figure 3), risk assess-
ments that were based largely upon linear fits
of leukemia mortality among workers exposed
to hundreds of parts per million of benzene
could well underestimate risks from benzene
metabolites in persons exposed at lower (non-
saturating) air concentrations (Rappaport
et al. 2005). In addition, this study highlights
the importance of nonoccupational sources
that also contribute to benzene-related
adducts. These background adducts limit the
usefulness of albumin adducts as biomarkers
of benzene exposure below about 1 ppm. On
the other hand, given the established causal
association between human leukemia and
benzene exposure, further investigation of
these adducts in low-exposed subjects may
help explain unknown causes for leukemia in
the general population (Lin et al. 2006;
McDonald et al. 1994, 2001; Smith 1996). 
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